Convolution kernels of (n + 1)-fold Marcinkiewicz multipliers on the Heisenberg group

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Flag Hardy Spaces and Marcinkiewicz Multipliers on the Heisenberg Group: an Expanded Version

Marcinkiewicz multipliers are L bounded for 1 < p < ∞ on the Heisenberg group H ≃ C × R (D. Muller, F. Ricci and E. M. Stein [25], [26]). This is surprising in that this class of multipliers is invariant under a two parameter group of dilations on C × R, while there is no two parameter group of automorphic dilations on H. This lack of automorphic dilations underlies the inability of classical o...

متن کامل

Singular Convolution Operators on the Heisenberg Group

1. Statement of results and outline of method. The purpose of this note is to announce results dealing with convolution operators on the Heisenberg group. As opposed to the well-known situation where the kernels are homogeneous and C°° away from the origin, the kernels we study are homogeneous but have singularities on a hyperplane. Convolution operators with such kernels arise in the study of ...

متن کامل

L-spectral Multipliers for the Hodge Laplacian Acting on 1-forms on the Heisenberg Group

Abstract. We prove that, if ∆1 is the Hodge Laplacian acting on differential 1forms on the (2n+1)-dimensional Heisenberg group, and if m is a Mihlin-Hörmander multiplier on the positive half-line, with L-order of smoothness greater than n+ 1 2 , then m(∆1) is L-bounded for 1 < p < ∞. Our approach leads to an explicit description of the spectral decomposition of ∆1 on the space of L-forms in ter...

متن کامل

On the boundedness of the Marcinkiewicz operator on multipliers spaces

Let h(y) be a bounded radial function and Ω (y) an H function on the unit sphere satisfying the cancelation condition. Then the Marcinkiewicz integral operator μΩ related to the Littlewood-Paley g−function is defined by

متن کامل

Strongly Singular Convolution Operators on the Heisenberg Group

We consider the L mapping properties of a model class of strongly singular integral operators on the Heisenberg group H; these are convolution operators on H whose kernels are too singular at the origin to be of Calderón-Zygmund type. This strong singularity is compensated for by introducing a suitably large oscillation. Our results are obtained by utilizing the group Fourier transform and unif...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Bulletin of the Australian Mathematical Society

سال: 2001

ISSN: 0004-9727,1755-1633

DOI: 10.1017/s0004972700019833